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ABSTRACT 

For the purpose of investigating the technical feasibility of rerigging the Haystack 

reflector,  the following theoretical tools were developed: 

1. A scheme was developed for the selection of an optimal sample of targets for 

predicting the error in the rms determination as affected by the size of sample. 

2. Computer programs were written for processing and analysis of the optical surveys. 

3. A statistical theory was derived for the prediction of surface deviations due to the 
random errors in the manufacture and rigging of the antenna. 

4. A computer program was developed for the calculation of the radiation pattern of 

the reflector from the known surface errors. 

5. An extension of Ruze's theory was developed for the prediction of the gain   loss 
and scatter of reflectors with nonuniform error distributions. 

The results of one night survey and one day survey wereanalyzed; the calculated rms was 
37 mils and 41 mils,   respectively.    The larger surface errors occurred in the inner panel 
region. 

The gain and the half-power beamwidths corresponding to the measured surface deviations 

were calculated; good correlation with radiometric measurements was obtained. 

Based on a detailed analysis of the rerigged reflector, on the assumption that only the 
inner panels are rerigged,  the rms under average thermal conditions is predicted not to 
exceed 25 mils.    Some further improvement can be achieved if cable forces and their 

pick-up angles are optimized. 
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Chief,  Lincoln Laboratory Office 
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1. INTRODUCTION 

1 .1        Purpose and Scope 

This document is the final report of the work performed under Massachusetts Institute 

of Technology Lincoln Laboratory Purchase Order C-444. 

The purpose of the investigation reported herein is to predict, from mathematical analyses 

based on optical survey data, the extent of improvement that can be achieved in the 

Haystack antenna by an appropriate rerigging of the reflector. 

The scope of the investigation is as follows: 

1 . To develop software for the analysis of zenith-position optical surveys, 

and for obtaining the root mean squares and contour maps of effective 
surface deviations of the reflector for selected elevation angles. 

2. To evaluate the accuracy of the analyses by comparison with radiometric 
measurements. 

3. To predict the properties of the rerigged reflector by selecting an appropriate 
region for rerigging and calculating the deterministic surface deviations as 

well as the effects of the random errors which will be introduced in the rerigging 

process. 

Chapter 2 of this report describes a theory for the selection of a sample of targets for the 

optical survey and a discussion of the effects of this sampling on the estimates of the 

reflector characteristics.   A description of the method of analysis of survey measurements 

and the results obtained are given in Chapter 3.    Comparison with radiometric measure- 

ments are presented and discussed in Chapter 4. Chapter 5 contains the develop- 

ment of the methods for the deterministic and stochastic prediction of the behavior of the 

rerigged antenna.   A summary of the results obtained and conclusions are given in Chapter 6, 



1 .2        Description of Reflector Surface 

The paraboloidal surface of the Haystack antenna is composed of an inner row of 32 panels 

and an outer row of 64 panels.   A one-inch thick splice plate composed of 32 segments 

joins the inner and the outer panels.   The panels are supported on a system of standoff studs 

that are normal to the surface, and two lines of shear studs oriented parallel to the RF axis. 

Expanders are provided at all radial joints for rigging purposes.   These expanders are designed 

to act also as shear keys between the adjacent panels.   On the back surface of the reflector 

there is a system of circumferential, preloaded cables guided on rollers.   The rollers located 

near the panel edges are mounted close to the back surface.   For rigging purposes, the 

rollers in the middle of panels can be displaced from the back surface, thus permitting 

variation of the force applied normal to the panel surface. 

On the surface of the reflector, there is a set of primary targets (rows A through H) and a 

set of secondary targets (rows J through P).   There are 64 targets on each of the target lines 

A, J, B, K, C, L, and D, and 128 targets on each of the target lines M, E, N, F, O, G, 

P, and H, totalling 1472 targets in all .   The target locations were established on the panels 

by reference to a system of tooling holes.   The original rigging of the reflector surface was 

achieved by bringing each target to within a specified allowable tolerance of its theoretical 

location, as specified in the bias rigging table. 

1 .3        Historical Background 

Following the original rigging of the Haystack reflector, a series of calibration measure- 

ments by D . G. Stuart, made for the purpose of developing a calibration chart for the optical 

probe, indicated that the probe contained serious errors.   These errors, which were as high 

as 43 seconds of arc, were found to be caused by corrosion of the mirror positioning button 

[1 j.   Following this discovery,   a committee was formed to study the feasibility of rerigging 

the reflector.   In its final report [2], the Committee recommended that the Haystack antenna 

be rerigged by the theodolite-tape method; the implication was that direct optical and tape 

measurements should be made from the RF axis to each rigged point. 



An alternate method of rerigging, based on the use of the distances between targets located 

on the same radial line and of a theodolite for optical measurements, was analyzed by M. S. 

Zarghamee and H. Simpson [3/4].   The method consists of locating the splice plate targets 

by tape-and-theodolite and then proceeding to locate the other targets by the use of the 

theodolite alone.   This method assumes that an error bound can be established for the distances 

between targets.   It was concluded from this investigation that,   if the effects of thermal dis- 

tortions can be neglected, the targets can be rigged to within approximately 7 mils rms. 

The thermal distortions were first observed by North American Aviation [5] during the 

initial rigging process.   Measurements indicated that targets on the Haystack reflector 

undergo large movements over periods of several hours.   A subsequent investigation performed 

by Dynatech [6] revealed that the differences in the thermal time constants of the various 

structural components of the antenna when subjected to diurnal ambient termperature excursions 

cause large transient differences in the temperatures of various groups of members.   (A maximum 

temperature difference of 10 F was predicted between the splice plate and the panels of the 

reflector.)   A thermal analysis of the antenna in the face-up attitude was performed by 

Simpson Gumpertz & Heger Inc. [7], employing the results of the Dynatech investigation. 

It was concluded that the thermal lag of the splice plate is the major source of thermally 

induced distortions; the magnitude of these distortions overshadows those caused by the temper- 

ature differences in the other structural components.   It was recommended that corrective 

measures be taken to remedy this problem .   To reduce the time constant of the splice plate, 

it was decided to paint it black.   Subsequent measurements showed a maximum observed 

temperature difference between splice plate and panels of less than 3 degrees.   This reduces 

the calculated maximum thermally induced distortion, assuming an axisymmetric temperature 

distribution, from 35 mils rms to 10 mils rms. 



2. TARGET SAMPLING 

2.1 Introduction 

The original rigging of the Haystack reflector was performed in the face-up position by 

bringing the primary and secondary targets to within specified tolerances of the biased 

surface. (The biased surface of the antenna in the face-up position was taken as the 

surface which deviates from the perfect paraboloidal surface by one-half the maximum 

difference encountered in the static dead weight deflection of the antenna in tilting 

from face-up to face-side attitude.)   To obtain an idea of the surface deviations in the 

present dish and to predict the level of improvement that can be achieved, a survey of 

the reflector was necessary.   Obviously, it was desirable to include as many targets as 

practicable in the survey. 

Since the surface deviations change noticeably with time [7], it was necessary to restrict 

the total time of the survey.   Approximately stable thermal conditions have been observed 

for a period of a few hours starting about midnight.   This established an approximate upper 

limit for the total number of targets that could be included in the survey.   This limit 

corresponded to approximately one-third of the total number of targets. 

The problem of selecting an optimum distribution of targets as well as the effects of the 

total number of targets selected on the accuracy of the results obtained are discussed in 

this chapter.   The problem is formulated as one of stratified random sampling, with inboard 

and outboard targets each forming a sampling stratum.   The optimal distribution is determined 

and the effect of the size of the sample space on the variance of the predicted rms is 

studied . 

2.2        Theory of Stratified Random Sampling 

In random sampling from a population, the size of the sample as well as the technique of 

sample selection affect the efficiency of the sampling investigation.   The process of 



dividing the population into parts prior to sampling and then drawing random samples 

from each part separately is called stratified random sampling.   For maximum efficiency 

of the estimation, the distribution of the sample population among the various parts must 

be determined in an appropriate manner. 

Consider the total target population of size   N   subdivided into   k   strata.   Denote the 

size of the jth stratum by Nj .   For the ith target in the jth stratum, define xi} as follows: 

x«j     -      N    ^F:'F
ClJ (2.1) 

where Aj j     =      the area associated with the target, 

FJJ      =       the illumination factor associated with the target, 

CtJ      =      the effective surface deviation of the target from the 

best-fit paraboloid, 

and the denominator is the sum of all the products of the area and illumination factors. 

The mean of all the Xj j 's is equal to the square of the root-mean-square of the effective 

surface deviation of the antenna weighted by the area and illumination factors; that is 

*        -    W   I*"   =  £L'A,?F,f"   "  (mS)3 <2-2) 

Let   Xj    be the mean and of   be the variance of the XJJ'S in the jth stratum; therefore, 

1        NJ 
*i       =     rr     X       xn (2.3) 

INj     i*i 

anc o^     =   rr    2    (xtJ -Xj)
3 (2.4) 

|NJ   i=i 



The mean of all the x{ j 's may then be defined as follows: 

"N    S.    NJ   *= (2-5^ 

Assume that we want to take a sample of total size   n; the population of the sample space 

in the jth stratum is designated by nj .   To predict the rms of the dish, we first estimate 

x:   in each stratum and then employ Eq. (2 .5) to estimate the value of "x.   If we denote 

the estimated value of Xj  by 

1      ni 
zj        =     —    £     xn (2.6) 

nj     i*i 

the variance of this estimator (this variance is a measure of the accuracy of the sampling 

only) in the jth stratum is given as follows: 

2 N,   - n,       a,2 /0  -f, 
0-        =     -r* f    —J— (2.7) 

zj Nj   - 1       nj 

where a3     is the variance of the estimator in the jth stratum if sampling is performed 
ZJ 

without replacement [8].    It is of interest to note that when nj   = Nj , that is when all 

the targets in the jth stratum have been selected in the sample space, then the variance of 

the estimator in that stratum vanishes; on the other hand, for a sample space of only one 

target, the variance of the estimator is equal to the variance of the Xj i 's in that stratum. 

The variance of the estimator for the total target space is then given by the following 

equation: 

k       NJ 
j7i      Ns n, =* (H^£)#        (2-8> 

To optimize the choice of samples, the value of the number, nj , of sample targets in 

each stratum is chosen to minimize the variance of the estimator. To perform this optimization, 



we let the partial derivative of 02   with respect to the number of targets in each stratum 

vanish, subject to the condition that the total number of targets remains constant, that is 

(2.9) 
k 

E   nj 
J=i 

Let us then write Eq. (2.8) in the following form: 

°z       =    W 
k-1 

L 
3      _2 N* ak

a Nfo2 

(Nj-l)nj     '   (Nk-l)nk 

1     I      NLof 
N3    ,.,     N,  - 1 

(2.10) 
Jsl INJ 

If we express nk   in terms of nx , n2 , . . . ,nk_x , n and perform the differentiation, we obtain 

So2 

z 

dn, 
_NL^f N3

k   o
2, 

N2(Nj-l)nf        N2(Nk-l)nk2 
=   0    for   j = l,2,...,k-l     (2.11) 

The above equation implies that 

Nf   of 
N2(Nj-l)n? 

=   constant = Q2 (2.12) 

For Nj  much larger than unity, we can write 

n- 
=      Nj_Oj. 

N Q 
(2.13) 

Noting that n =   E   ni , then the value of   Q   may be obtained as follows: 

n    =   s J^a- £       NQ 

or Q       =    —     £       Nj CTj 
Nn     J=i 

J 

(2.14) 

(2.15) 



Substituting Eq. (2.15) into Eq. (2.13), we get 

n^ (optimum)       =      n   -r-*—4 

k (2.16) 

E    Nj ot 
1=1 

and 

o2       =    -L   F^    Njajl3   -^g    E      Nj of (2.17) 

If there is only one stratum, we obtain from Eq. (2.17) 

•       --£--£ (2,8, 

and the error reduces to zero as   n   approaches N . 

Note that Eq. (2.18) and Eq. (2.17) have the same form, differing only in the coefficients 

of the variance function . 

2.3       Application to Haystack Antenna 

The analysis of an optical survey of the Haystack reflector [9] revealed that there are highly 

variable surface deviations in the inner 30-foot radius of the aperture; the errors in the 

outer 30 feet are significantly less.   Therefore, it is reasonable to assume two sampling 

strata, one consisting of all the targets on the inboard panels and another stratum consisting 

of all the targets on the outboard panels.   An estimate of the values of the variance of xl} 

(XJJ defined by(Eq. 2.1))was obtained from the analysis of this survey.   It was found that 

aa       =      .00339 

and cr2       =       .00088. 

8 



From Eq. (2.16), the ratio of the number of selected targets in the inboard panels to 

those located on the outboard panels is about 1 .35 for optimal sampling technique.   Using 

Eq. (2.17), the variance of the sampling may then be expressed as follows: 

0*   -   2-325xlQ-6.243xl0-9 
z n 

It is emphasized that this equation gives the variance of the square of the predicted rms 

of the surface.   The plot of the standard deviation of the predicted (rms)3 with the number 

of targets in the sample space is given in Fig. 1 .   This figure indicates that the standard 

deviation of the predicted rms of the reflector, assuming that its actual value is about  .04 

inches, is approximately .0005 inches for about 600 targets,  .001 inches for about 270 

targets, and . 002 inches for about 100 targets. 

Optimal sampling schemes adopted for 424- and 212-target sample spaces are shown in 

Figs. 2 and 3, respectively.   Assuming again that the actual rms is about .04 inches, the 

expected standard deviation of the estimated rms will be about 1 .3 percent for the 424-point 

sample and about 2.7 percent for the 212-point sample.   In both sampling schemes, the 

total number of targets in each sampling stratum is divided uniformly amongst the edge 

targets, center targets, and different target rows. 

A 424-point survey was made in the early hours of the morning of 1 September 1966 by 

D. G. Stuart and C. T. Frericks. The duration of the survey is estimated at less than three 

hours.   A 212-point survey was made after 1 p .m . on 30 August 1966.   This survey took 

about one hour.   The weather was cloudy and the temperature was about 88  F.   The splice 

plate in both cases was painted black. 



3. ANALYSIS OF OPTICAL SURVEYS 

3.1 Introduction 

The analysis of an optical survey consists of the prediction of the reflector tolerances 

through analysis of a set of optical measurements to the selected sample of targets.   An 

important assumption in this analysis is that the deflections at the target points are in 

fact representative of the deflections between targets.   This assumption seems reasonably 

valid from the manner in which the panels are supported in reference to the location of 

the target points.   An indication of the accuracy of this assumption can be obtained 

by comparing the results of this investigation to those of the radiometric measurements. 

Each optical survey consists of a set of zenith angles measured from the reference axis 

of the theodolite, located on or very near the RF axis, to the lines of sight to the 

selected targets.   The exact location of theodolite and the angular orientation of its 

reference axis with respect to the RF axis are not known. 

To define the reflector surface, a distance parameter is also required.   This is obtained 

by establishing error bounds for the theoretical distances between targets and from radial 

measurements to the splice plate targets. 

The radii to the splice plate targets were measured during the original rigging process 

from a point on the vertical reference axis of the antenna structure.   Since during the 

optical survey radial distance measurements were not taken to the splice plate targets, the 

original radial measurements are adopted for this analysis.   Furthermore, it is assumed that 

these measurements are in fact taken from the actual RF axis, that is, the axis of the 

best-fit paraboloid.   The effect of this assumption is discussed later in this chapter. 

The surface deviations from the best-fit paraboloid cause changes in the path lengths of 

the RF waves, which may result in phase errors and hence loss of gain. It can be shown 

[ 3 ] that the RF direction (z) component of the normal surface displacement at any point 

10 



is equal to one-half the change in the RF path length of the reflected waves af that 

point.   This distance is referred to as the effective surface deviation (after J. Ruze). 

A measure of surface accuracy useful for predicting RF performance is the rms of the 

reflector, which is defined here as the square root of the mean of the weighted squares 

of the effective surface deviation.   The weighting function is the illumination distribution 

over the aperture .   This rms is expressed as follows: 

rms of the reflector = 

where r = 

e(r)       = 

m   = 
A 

/   f(7)   <?(J)dS 

f f (7) d S 
«-   A 

(3.1) 

aperture position vector, 

effective surface deviation at the point defined by  7, 

the illumination function at the point defined by  7, and 

the aperture area . 

In this chapter the illumination function is assumed to have a paraboloid-on-a-pedestal 

distribution with a 12 db edge taper(Fig. 18). 

The method of analysis and the results obtained are discussed in the following sections. 

3.2        Method of Analysis 

Employing the zenith-angle measurements, the effective surface deviations with respect 

to the best-fit paraboloid may be calculated for any desired position of the antenna as 

follows: 

1 . Assume an initial reference paraboloid with the same focal length as the 

theoretical design paraboloid    and located near the estimated position of the 
best-fit paraboloid . 

2. Compute at each measured target the effective surface deviations with respect 

to the initial reference paraboloid. 

11 



3. Determine the best-fit paraboloid by minimizing the rms of the effective 
surface deviations with respect to the rigid body movements and change 

in the focal length of the initial reference paraboloid. 

4. Compute the effective surface deviations with respect to the best-fit 

paraboloid, and the rms of the reflector. 

5. Add to the best-fit surface deviations the dead weight travels of the 

surface points in going from zero to any desired zenith angle and repeat 

the best-fitting process. 

The initial reference paraboloid may be assumed to be oriented so that its axis coincides 

with the vertical axis of the theodolite.   The elevation of its apex below the 

theodolite may be taken as the average height of instrument calculated from the measured 

zenith angles of a small set of targets by assuming temporarily that these targets are at their 

theoretical design locations.   The initial reference paraboloid thus obtained will not be 

far from the best-fit paraboloid.   Therefore, the rigid body movements and the change in 

the focal length of the initial reference paraboloid will be small enough to permit 

appropriate linearization. 

The general theoretical development pertaining to the method is presented in Section 3.3; 

Sections 3.4, 3.5, and 3.6 are devoted to detailed descriptions of the computational 

procedure. 

3.3        Theoretical Development 

The location of the best-fit paraboloid may be expressed in terms of the location of the 

initial reference paraboloid by a vector   U   whose six components are as follows: 

Ui , u2 , U3 =      the x-, y-, and z-components of the distance vector 
between points T and T' located on the reference axes 

of the initial and the best-fit reference paraboloid, 

respectively Figs . 5 and 6), 

12 



u4/u5    = the x- and y-components of the vector defining the rotation of 
the axis of the best-fit paraboloid with respect to the axis of the 

initial reference paraboloid, and 

u6 = the difference in the focal lengths of the best-fit paraboloid and 

the initial reference paraboloid. 

At a point on the aperture defined by the position vector 7, the effective surface 

deviation   e (r) after a small shift of the reference paraboloid may be calculated as follows: 

e (?)   =     e (?)  + L u, f4 (r) (3.2) 
o w 

where    c  (?)   =     the effective surface deviation at this point with respect to the initial 
reference paraboloid, and 

€( (?)   =     the effective surface deviation at this point due to a unit ut . 

We now seek those values of u{  for i = 1 ,2, ... ,6 which minimize the rms of the effective 

surface deviation;  that is, 

ii•*)=  0 for i = 1,2,...,6 (3.3) 
9 ut 

It can be easily shown that the above requirement is equivalent to the following: 

.[   C (?)   €,  (?)   f (r)d S = 0 i = l,2,...,6 (3.4) 
A 

If Eq. (3.2) is substituted in the above equation,   a system of six equations is obtained,  in 

terms of the six u components, as follows: 

[B]    {U}   =   {C} (3.5) 

where the terms of the matrices B and C are given by 

bij      =      J*     €,  (r)   Cj   (r)   f (r)   dS (3.6) 
A 

and        Ci        = - J    e,  (7)   e    (7) f (7) d   S (3-7) 
A ° 

13 



If c   r €11... f€e are known the components of the U vector may be calculated from 
o 

Eq. (3 .5),and Eq. (3.2) and Eq. (3.1) may be employed to calculate the rms of the reflector. 

3.4        Calculation of Surface Deviations from Initial Reference Paraboloid 

The method of calculation of the surface deviations from the initial reference paraboloid 

consists of computing the surface deviations at the splice plate targets and then moving 

outboard and inboard from the splice plate to locate each successive row of targets.   The 

splice plate targets can be located by a theodolite and radial distances from a known point. 

In the present investigation, it is assumed that the radial measurements to the splice plate 

targets by North American Aviation during the initial rigging process were made from the 

axis of the best-fit paraboloid.   (Error sensitivity due to this assumption was checked by 

computing the effective surface deviations due to an arbitrary displacement of this 

reference point; the calculated rms of the effective surface deviations thus obtained was 

less than 4.5 percent of the magnitude of the displacement of the reference point.)   Since 

the actual location of the best-fit paraboloid is not known a priori, the radial measurements 

are first considered to be with respect to the axis of the initial reference paraboloid.   Due 

to the rigid body movements of the initial reference paraboloid, changes are introduced 

in these radial distances.   These changes are corrected (see    Section 3.5)   so that the 

radial distances of the splice plate targets from the axis of the shifted paraboloid are identical 

to the values measured by North American Aviation . 

Once the splice plate targets have been located, the locations of the successive outboard 

and inboard targets can be obtained from the angular measurements and the known distances 

between targets. 

Since small quantities are to be determined from combinations of large numbers, the 

arithmetic computation is susceptible to large round-off errors.   This problem can be overcome 
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by working with the deviations of the angular measurements from the theoretical design 

values obtained for the initial reference paraboloid. 

The effective surface deviation obtained from the intersection of the line of sight from 

point P on the axis of the initial reference paraboloid (Fig. 4) and a distance   d   from a 

known point   Q   is given by the following equation (for derivation see Section 5.3): 

[~1 + (jff]fcot tf>0+ cot a) 
6 esc a (cot 0 - —) + to cscs iMcot a r + 2z)]   (3.8) 

where    CO =       the angular error in the line of sight;  positive as shown in Fig. 4 

6 =      the error in the distance QR 

In these equations the angular and distance errors are assumed to be small when compared 

to the dimensions of the antenna.   This in fact is the case,since we have purposely selected 

the initial reference paraboloid very close to the best-fit paraboloid.   The errors in the 

origins of the points P and Q   may be converted to equivalent 6 and   co errors.   The detailed 

explanation of this conversion is presented in Reference 3. 

In the application of the above procedure, the known (deterministic) distance errors   between 

targets on the same panel as well as the known distance errors between the splice plate targets 

and the first targets on the adjacent panels are included.   For errors which are random 

in nature, the analysis method of Chapter 5 may be employed .   However, the results of an 

investigation of the effects on the rms of the reflector of the estimated random errors in the 

distances between targets on the same panel and in the connection between the splice plate 

and panels revealed that these errors are small and that their effects on the rms of the reflector 

can be considered .negligible . 

3.5        Effect of Movements of Initial Reference Paraboloid 

In the following paragraphs    the effects of unit rigid body translations, unit rigid body 

rotations, and a unit change of the focal length of the initial reference paraboloid upon 
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the effective surface deviation at a target are formulated. 

The effective surface deviation, e, was indicated in Section 3.1 to be the z-component 

of the normal error.   If   n = (n   , n   , n ) denotes the unit normal vector to the reflector 
x      y     z 

surface at a point on the reflector and w = (u,v,w) is the displacement vector at that 

point, then 

e   =  n      (n.w) . (3.9) 

3.5.1    Effect of a Unit x-Displacement.  Consider a unit x-displacement of the initial 

reference paraboloid (Fig. 5).   As a result of this rigid body translation, the radial distance 

of the splice plate targets will differ from that measured with respect to the initial 

reference paraboloid by -cos <p' (<p' as defined in Fig.  17).   Then 

6i  =   n    n    - e     cos </)' (3.10) 
x    z       sp 

where e     is the effective surface deviation due to a unit increase in the radial distance 
sp 

of the splice plate targets.   The value of c     may be calculated from Eq. (3 .8). 
sp 

The effect   of a unit y-displacement may similarly be calculated. 

3 .5 .2    Effect of a Unit z-Displacement.   Consider a unit z-displacement of the initial 

reference paraboloid (Fig. 6).   Since such a rigid body displacement does not change the 

radial distance of the splice plate targets, then 

e3   =   n2 (3.11) 
z 

3 .5.3    Effect of a Unit x-Rotation .   Consider a unit rigid body rotation of the initial 

reference paraboloid about an axis through the theodolite and parallel to the x-axis (Fig.7) 

This rigid body rotation causes a change in the radial distance of the splice plate targets 
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equal to (z     - z ) sin <p',where z   is the height of instrument and z     is the z-coordinate 
sp       t t sp 

of the splice plate .   Then 

e4        =       (z     - z ) sin cp' e     + n   . (n  (z   - z) + n  y) (3.12) 
sp       t sp       z       y    t z 

The effect of a unit y-rotation may similarly be formulated . 

3.5.4   Change in the Focal Length.   A change in the focal length of the initial reference 

paraboloid produces a surface deviation in the direction of the RF axis.   This deviation 

is given by the following equation: 

OI" A C 

Az    = -zf^) 

Hence, the effective surface deviation for a unit change in the ratio (Af/f) would be 

C6        =-   (n/z (3.13) 

3.6        Effects of Dead Weight Travels 

The surface deviations calculated with respect to the best-fit paraboloid in the face-up 

position may be modified by the effects of the shift in the gravity vector as the antenna 

tilts from zero to any desired zenith angle, thus yielding the surface deviations of the 

antenna in that position .   The travel of a point as the antenna moves from face-up to zenith 

angle <p  is obtained by the following equation: 

w(a)   =      w   (cosa-l) + w  sin a -    w   <cos a tan/?,) (3.14) 
u s c3 

where   w =      dead weight travel of a point from face-up position to zenith angle OL, 

w =      dead weight deflection of the point in the face-up position, 
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w =      dead weight deflection of the point in the face-side position, 

w =      dead weight deflection of the point due to the action of the 

center cable in the face-side attitude, 

/? =      zenith angle at which center cables start to pick up load, and 

(g)      =      0 for a - £ <  0 

=      g for a - £ *   0 . 

The values of w   , w , and w      are obtained from a previously performed static analysis 
US C3 

of the antenna by the FRAN computer program. (Note that these values do not include the 

effects of the weight of the net that has recently been attached to the antenna.)    From 

these, the best-fit reference paraboloid through the modified surface deviations is obtained 

and the effective surface deviation with respect to this paraboloid and the rms of the 

reflector are calculated . 

3.7        Results and Conclusions 

The rms of the reflector (the root mean of the illumination-weighted square of the effective 

surface deviation from the best-fit paraboloid - Eq. (3.1)) was computed for elevation 

angles between zero and 90 degrees, employing the 424-point night survey results.   The 

variation of the rms over the elevation coverage is indicated in Fig. 8.   The calculated 

rms of the reflector in face-up position is 0.036    inches.     As the zenith angle increases, 

the rms of the reflector increases until it reaches .037 inches, at which point the center 

cable starts to pick up load .   The rms of the reflector then decreases to a minimum of .034 

inches in the vicinity of 75 degrees zenith angle before starting to rise again . 

The rms of the reflector in the face-up attitude calculated from the daytime measurements 

is about .041 inches. 

Contour maps of the effective surface deviations of the reflector, based on the night survey, 

are shown for different elevation angles in Figs. 9 through 15.   Fig. 16 is a contour map of 

the effective surface deviations of the reflector in the face-up attitude for the day survey. 
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Analyses of the distribution of the surface deviations, which may be observed only 

partially from the contour maps, revealed that 

1 . For the night survey, the larger surface deviations are located in the region 

of the inner panels; the outer panels indicate significantly less distortion. (For 

the inboard and outboard targets , the   rms of their effective surface deviations 

from their own best-fit paraboloid was calculated separately.   The results 

indicated that the rms of the inboard targets is approximately twice that of the 

outboard targets.) 

2. The day survey gave a distribution of surface deviations very similar to that of 
the night survey; the observed increases in magnitude   occurred primarily in the inner 

panel region . 

3. For both the day and the night surveys, the distribution of the error in the region 
of the inner panels did not change significantly with the zenith angle of antenna. 
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EXPERIMENTAL VERIFICATION 

4.1 Introducti on 

To test the validity of the analysis performed in the last chapter, gain and half-power 

beamwidth will now be calculated and compared with the results of the radiometric 

measurements. 

4.2        Computation of Gain and Radiation Pattern 

The axial gain of the existing reflector and its radiation pattern may be computed from 

the surface deviations obtained from the analysis of the optical survey by the following 

equation: 

4TT     |J"    f (?)   e'^'? eJ' 6(F)   dsT G(6,<p)     =        $     ' A   - (0  6 51L (4.1) 
A J   f2 (f)dS 

A 

where 

X = the wavelength, 

f (r) = the illumination function at point  7  of the aperture, 
_ 477 f  (7) 

6 (r) =        —    = the phase error or aberration function at point 
A 

7 of the aperture, 

7 = the aperture position vector, 
2 77 

k = ——  p   where   p    is a unit vector in the direction of observation, 
A        o ro 

(9,(p) = angles defining the direction of observation (see Fig. 17),and 

A = the area of the aperture. 

A program was written to evaluate the above integral for given values of e and for a range 

of values of <p and 8, thus establishing the radiation diagram of the antenna.   For the 

face-up attitude, the radiation pattern is shown in Figs. 19 and 20 for the 424-point night 
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survey and in Figs. 21 and 22 for the 212-point day survey. The results are shown 

for 15 .75 GHz (X = 1 .94) and 8 .25 GHz (X = 3 .64) and a parabola-on-a-pedestal 

illumination function with 12 db edge taper. 

In the following table are listed some of the pertinent results obtained: 

Night Survey Day Survey 

RMS 0.0366 inches 0.0413 inches 

Axial Gain 

15.75 GHz 73.37decibels 72.75 decibels 
8.25 GHz 68.96 decibels 68.68 decibels 

Half-Power Beamwidth 

15.75 GHz 33.0   millidegrees 32.35 millidegrees 

8.25 GHz 63.5   millidegrees 62.8   millidegrees 

Note that the axial gain at the higher frequency exceeds that at the lower frequency 

by about 4.4 db for the night survey and about 4.1 db for the day survey. 

4.3        Experimental Results 

The flux of Cas A, a radio source within constellation Cassiopeia, was measured on the 

cornucopia by Mr. R. J. Allen.   After reduction to a similar feed basis and applying 

corrections for waveguide and rotary joint effects, the following results were obtained 

[11]: 

Eff ic icncv 
Date Frequency Feed r      . „.  7 HPBW 

at Feed Flange 

35.8 md 

70.8 md 

Mar. 1966 15.75 GHz Horn 24.0% 

Dec. 1965 8.25 GHz Clavin 40 .9 % 
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The gain of the antenna may be expressed as follows: 

G     • 
4ffA 

=    "   A3 

G2 

(4.2) 

Hence 

or 3 

I- " 

which represents the difference, in db, between the gains at the two wavelengths 

10 log d - 10 log G2 = 10 log PL\   +  20 log   U*-\ (4.3) 

Substituting into Eq. (4.3) the experimental results tabulated above, we find that an 

increase in frequency from 8.25 GHz to 15.75 GHz is associated with an increase in 

gain of 3 .3 db. 

The 3.3 db increase includes the effect of radome losses, which have been calculated by 

J. Ruze to be 1 .2 db and 1 .7 db at 8 .25 GHz and 15.75 GHz, respectively.   This 

represents a decrease in gain of 0.5 db at the higher frequency.   These loss calculations, 

however, assumed a 0.032 inch thick radome membrane.   According to Mr. E. Murphy of 

Lincoln Laboratory, the actual thickness is probably somewhat larger than this figure.   Further- 

more, the radome has two layers of paint.   These effects are completely negligible at 8.25 GHz 

but are significant at 15.75 GHz.   Accordingly, the decrease in gain due to radome losses is 

estimated to be at least 0.7 db.   Since the radome measured increase in gain at the higher 

frequency is 3.3 db, the measured increase associated with the antenna itself is at least 4.0 db. 

4.4        Correlation of Results of Optical Survey with Radiometric Measurements 

The 4.0 db increase in gain at 15.75 GHz calculated in Section 4.3 from the radiometric 

measurements compares with the values 4.4 db and 4.1 db obtained in Section 4.2 from 

the analyses of the night optical survey and day optical survey, respectively.   The agree- 

ment in the difference of axial gain is quite good.   The explanation for the digit discrepancy 

may be in the differences in the thermal conditions of the antenna.   The radiometric 
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measurements were made before the splice plate was painted black; also, the antenna 

was not in the face-up attitude, and hence the temperature distribution was not 

axisymmetric. 

The half-power beamwidths calculated from the results of the optical surveys are 

somewhat smaller than those measured.   Part of this discrepancy may be due 

to the nonuniformity of the radome blockage over the aperture.   Since the members of the 

radome space frame have larger depths than widths, the blockage is minimum at the center 

of the aperture and is maximum at the outer edge.   A blockage of .3 db at the center and 

1 .2 db at the edge of the reflector has been calculated by J. Ruze [13].   The effect of 

this blockage variation on the antenna gain and on the radiation pattern is similar to that 

resulting from an increase of 0.9 db in the taper of the illumination function . 

Another reason for the discrepancy in half-power beamwidth is in the difference of the 

edge taper of the illumination pattern produced by the Clavin feed and that of the horn 

feed.   The Clavin feed has an edge taper of 12 db,whereas the taper of the  horn feed is 

about 14 db.   Considering also the effect of the radome blockage, the effective edge 

taper at 15.75 GHz is about 15 db and that at 8.25 GHz is about 13 db.   The adjusted 

half-power beamwidths are as follows: 

Night Survey Day Survey 

RMS 36.6 mils 41 .3 mils 

Half-power Beamwidth 

15.75 GHz (15 db edge taper) 33.9 md 33.1 md 
8 .25 GHz (13 db edge taper) 64.4 md 63 .6 md 
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At least a part of the remaining discrepancy may be associated with the width of the 

radio source and with the scatter of the experimental results.   Recent radiometric 

measurements by Dr. Meeks estimate the HPBW at about 36 md at 15.75 GHz and 69 md 

at 8.25 GHz for a point source.   These values are respectively about 6 percent and 7 

percent larger than the corresponding calculated   values. 

It is of considerable interest that the calculated results indicate a decrease in the half- 

power beamwidth with increasing rms.   Significantly, this phenomenon was also observed 

by R. J. Allen through his radiometric measurements [12],   As it is shown in the theoretical 

development in Appendix A, this phenomenon is a characteristic of antennas with large 

errors near the center of their aperture. 

The difference in the measured axial gain of the antenna between 8.25 GHz and 15.75 GHz 

may be employed to calculate the rms of the dish by means of Ruze's equation, 

4„A      -(±LL)2 
Go    =   *T£     e X <4'4> o A 

Substituting in Eq. (4.4), the radiometrically measured difference of 4.0 db is found to 

correspond to an rms of reflector of about 41 mils.   This is significantly less than the value 

of 54-55 mils rms that was formerly believed to be the surface accuracy.   However, it 

compares favorably with the results of the optical survey, which are about 36.6 mils rms 

for the night survey and 41 mils rms for the day survey. 

4.5        Conclusions 

The results of this investigation indicate that the analyses of the optical surveys correlate 

reasonably well with the results of the radiometric measurements.   Reasonable explanations 

have been found for the small discrepancies that exist.   Therefore the analyses performed 

in Chapter 3, in which the surface deviation was obtained by analyzing only the deviations 

at the target points, appear to be valid. 
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The radiometric measurements indicate that an increase in the rms of the reflector 

corresponds   to a decrease in the half-power beamwidth.   This phenomenon was also 

observed through the analyses of the optical surveys.   As is shown in Appendix A, 

this is a consequence of the fact that the larger errors are located near the center of 

the reflector.   This observation confirms the conclusions reached in Chapter 3. 
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5. PROPERTIES OF THE RERIGGED REFLECTOR 

5.1 Introduction 

As was shown in Chapter 3, the present Haystack reflector has its largest surface deviations 

from the best-fit paraboloid in the region of the inner panels.   It is important to know the 

level of improvement that can be achieved by rerigging only these panels.   For the purposes 

of this investigation, it is assumed that the rerigging will result in zero nonrandom error 

at the rerigged targets when the antenna is in the 45-degree attitude.   Therefore, for the 

rerigged reflector at any given position angle, the sources of surface deviations from a 

best-fit paraboloidal surface consist of the following: 

a. the existing surface errors of the outer panels at the given elevation angle, 

b. the dead load travels of the inner panels in going from 45 degrees to the given 

elevation angle, and 

c. the random errors consisting of instrument errors, observer errors, manufacturing 

tolerances and rigging tolerances at the rerigged targets. 

In this chapter, a stochastic method is presented for the determination of the effects of the 

random sources of error on the surface deviations and on the expected rms of the effective 

surface errors of the antenna.   These errors are combined with the known deterministic 

errors and the expected rms of the rerigged dish is predicted. 

It is important to note that in this chapter we have again assumed that the tolerance of the 

surface can be established through analysis of the surface deviations of the target points 

alone . 

5.2        Nonrandom Surface Deviations of the Rerigged Reflector 

Let us consider the nonrandom surface deviations of the rerigged reflector when the antenna 

is in the 45-degree attitude.   The reference surface is obtained by passing a best-fit 

paraboloid through all the outboard targets and the targets located on the splice plate.   The 
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inboard targets (the targets located on rows A,J,B/K/C/ and L) are assumed to be 

rigged so that they have no nonrandom effective surface errors.   (The amounts that the 

targets on the inner panels   should be moved are thoir present deviations from this best-fit 

paraboloid when the antenna is tilted to 45 degrees. ) 

The rms of the nonrandom effective surface errors of the rerigged antenna is shown in 

Fig. 23 for the range of zenith angle coverage of the antenna.   A contour plot of the 

deterministic effective surface errors of the rerigged antenna in the face-up position is 

shown in Fig. 24.   This figure may be compared to Fig. 9,which shows the effective surface 

errors of the present dish . 

5 .3        Effects of Random Error 

In this section a procedure is presented to calculate the statistical characteristics of the 

random surface deviations that will be produced at the rerigged targets.   In brief, the 

procedure involves predicting the standard deviation and the frequency distribution function 

for each significant source of error involved in the rerigging of the inner panels.   On the 

basis of these predicted values, the statistical properties of the distribution function of the 

effective surface error is obtained for the rerigged antenna.   The following paragraphs 

contain the derivation of the governing equations and the application of these equations to 

the Haystack antenna. 

5.3.1 Definition.  For convenience, the error in rigging a target is divided into two 

parts, according to the source from which it originates.   That portion of the error which is 

due only to the error in the line of sight and in the chord distance from the previously rigged 

point is designated "direct" error;  the error resulting from the mislocation of the previously 

rigged points is designed "derived" error. 

5.3.2 Derivation.   A line of sight which passes through a known point   P   with coordinates 

(0, z ) and which makes an angle   ij) with the vertical reference axis of the antenna intersects 
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a distance d from a known point Q at a point R (Fig. 4). The coordinates of point 

R may be established in terms of the coordinates of points P and Q, the angle 0,and 

the distance   d .   If 0 and   d   are in error so that 

0 =0+0) 
(5.1) 

d        =     d    +  6 
o 

where 0   and   d   are the expected (correct) values and a> and   6   are the errors in 0 and d 
o o 

respectively, then the coordinates of the point of intersection may be obtained in terms 

of co, 6, and the geometry of the system. 

Since the errors co and 6   are small, a linearization of the errors in the coordinates of 

point   R   in terms of   CO and   6   may be performed; then : 

_           cor   esc2 0O 6 esc   a 
or        -      + 

cot a + cot 0 cot a + cot 0 ro ^o 

orr esc   0  cot a 6 esc a cot 0 
•                                          o o 
6z        =       + ;    +     — 

cot a + cot 0 cot a + cot 0 ro o 

(5.2) 

where   6r and   6z   are the   r- and z-components of the error at point   R and a is defined in 

Fig. 4.   The effective surface error is given by the following equation: 

6z-(-^)   6r 

€ =      f  (5.3) 

l+(^-)2 

where   f   is the focal distance of the dish.   If Eqs. (5.2) are substituted in this equation, 

after simplification we obtain 

1 

[l *  (jj )2lcot 0Q + cot a ) 

6 esc a (cot 0   --sj)   +cocsc30   (cotar + 2z)   .   (5.4) 
L o      zt o 
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The coefficients of   6   and   co   in Eq. (5.4) depend upon the geometry of the dish, the 

theoretical locations of the targets, and the location of the theodolite.   If we denote 

these coefficients by   a   and   b, then Eq. (5.4) may be written as follows: 

e        =      a 6   +  b co (5.5) 

Let   A and   Cl be statistical variables corresponding to   6   and   co    respectively.   The 

variable   E   denotes the effective surface error.   Since 

E =      aA+bfi (5.6) 

the frequency distribution function, mean, and variance of   E   can be expressed in terms 

of frequency distribution functions, means, and variances of   A and   O . 

If we assume that both   A and   SI   have normal Gaussian distributions with expected values 

of zero and standard deviations of  CTC   and   (7       respectively, the effective surface error 
0 CO 

E   would also have a normal Gaussian distribution with zero mean and a standard 

deviation   a    given by 

/ a2 a2   +  b2   a2       . (5.7) 
V 6 co 

a 
€ y o u 

If A and Q, have any distribution other than normal Gaussian, then Eq. (5.7) would still 

hold, but the probability of occurrence of CT would depend upon the distribution function 

of   E. 

The effects of the derived errors and rigging tolerances may be now included by appropriate 

modification of the error in chord distance and error in the angle of theodolite. 

Any error in the location of the previously rigged point, point Q, may be resolved into 

two components, parallel and normal to QR.   The component of the error normal to QR will 
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not cause a significant error in the location of point R    [3] . However, the component 

parallel to QR modifies the error in the distance   d. In fact, the error in the distance 

d   may be expressed by 

A       =     AT  + AP  + AS (5.8) 

where AT      =      the error in chord distance between targets due 

target location error, 

AP      =      the error in the location of point   Q   in the direction 

of the chord   QR,   i.e., the "derived" error, and 

AS      =      the change in the length of QR due to panel deformation 

Therefore 

al      =     CT3   + CT2     + Q2 (5.9) 
0 t p s 

where a , 0"  , and a  are the standard deviations of AT, AP, and AS, respectively, 
t      p s 

The line of sight error   Cl includes the error in the angle set by the theodolite, the reading 

error (observation error), and the rigging tolerance, that is 

fl       =     A0  +-—- (5.10) 

where   A0 is the error in the angle in the line of sight, AR   is the statistical sum of the 

rigging tolerance and the reading error and is measured normal to the line of sight, and   L 

is the slope distance between the theodolite and the target.   Therefore 

a2   + (a/L)2 (5.11) r2      =     a2 

CO 0 

The distribution, expected value, and standard deviation of the derived error   AP   may 

be established if the statistical properties of the error in the coordinates of the previously 

located target   Q   are known.   If   AT, AS, AR, and A0 are assumed to be normally 
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distributed with zero mean values, then   AP and consequently the error functions   £ 

and   Cl would also have normal distributions with zero mean values.   Therefore, the 

effective surface error   E  will be normal and will have a mean value of zero and a standard 

deviation given by Eqs. (5.7), (5.9), and (5.11). 

Since the surface error   E   arises from a linear combination of a large number of sources 

of error,then, according to the central limit theorem, the distribution of   E   is approximately 

normal even if the distributions of the component variables are not normal. 

5.3.3   Magnitude of Errors.  The magnitude of the standard deviation of each source of 

error was calculated by assigning     a frequency of occurrence to the expected errors. 

Assuming a normal Gaussian distribution for each source, the standard deviation was then 

easily established.   For example, the standard deviation of rigging tolerance was obtained by 

assuming that 10 mils of error would occur at one percent frequency of occurrence.   The 

following table lists each source of error that was included in this analysis, its magnitude 

and (where applicable)   its  frequency of occurrence, and its   calculated standard deviatioa 

Where peak values are listed,  they are assumed to be three times the standard deviation. 

Source Magnitude and Description Standard Deviation 

1 . Location of Splice Plate 

2. Distance Between Targets 

3. Instrument Error 

4. Thermal Errors* 

5. Rigging Tolerance 

* Associated with rigging only 

analyzed previously [4 ] 0.0024 inches 

.005 inches peak 0.0017 inches 

2 seconds of arc,frequency = 1/20 1 .0 second 

.010 inches peak 0.0033 inches 

.010 inches,frequency = 1/100 0.0037 inches 

Based on these values, the expected rms of the effective surface error over the entire 

aperture due to the random sources is obtained as follows: 
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(rms)    = 
r 

r 02 • f d s 
.0035 inches (5.12) 

where the subscript   r   represents random sources.   The significance of this number is 

shown in the next section . 

5.4        RMS of Effective Surface Errors 

The rms of the effective surface errors may be expressed as follows: 

(rms)2 =      Si 
f   f (e + E)2 dS 

(5.13) 
r fds 

where   c   is the deterministic component of the effective surface error and   E   is its random 

component, which has a zero mean and a normal Gaussian distribution.   The expected 

value of (rms)2 may then be expressed by the following equation: 

(rms)2 = 

r   f (e2 +a2)d S 
(5.14) 

JfdS 
A 

since the expected value of the square of a normally   distributed variant with zero mean 

is equal to its variance, that is 

=     a2 

c 

Then, the total rms may be presented as 

(5.15) 

(rms)2 =       (rms)2     +    (rms)2 

a r 
(5.16) 

where (rms)d is the deterministic rms of the reflector (Eq. (3.1)) and (rms)2 is the average of the 

variance of the random component of the effective surface error over the aperture weighted 

by the illumination function (Eq. (5.12)). 

Employing Eq. (5.16),the total expected rms of the rerigged reflector can be obtained. 
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5.5        Results and Conclusions 

The final rms of the rerigged reflector, calculated on the basis of results of the night 

survey and on the assumption that only the inner panels are to be rerigged, is plotted 

in Fig. 23 for the range of zenith angle coverage.   The rms ranges from a minimum of 

16 mils to a maximum of 21 mils, at zenith angles of 50 degrees and 90 degrees 

respectively. 

Noting that (rms)   was calculated in Section 5.3 to be 3.5 mils, it is apparent from 

Eq. (5.16) and Fig. 23 that the contribution of the random errors to the rms of the 

rerigged reflector is very small . 

The average increase in the axial gain of the antenna, using Ruze's equation, is about 

1.25dbat 15.75 GHz. 
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6. SUMMARY AND CONCLUSIONS 

For the purpose of investigating the technical feasibility of rerigging the Haystack 

reflector, the following theoretical tools were developed : 

1 . A scheme was developed for the selection of an optimal sample of targets for 
predicting the error in the rms determination as affected by the size of sample. 

2. Computer programs were written for processing and analysis of the optical surveys. 

3. A statistical theory was derived for the prediction of surface deviations due to the 

random errors in the manufacture and rigging of the antenna. 

4. A computer program was developed for the calculation of the radiation pattern 
of the reflector from the known surface errors. 

5. An extension of Ruze's theory was developed for the prediction of the gain loss 
and scatter of reflectors with nonuniform error distributions. 

Two samples of targets were selected for optical survey by Lincoln Laboratory, one consisting 

of 424 targets and the other of 212 targets.   The 424-point survey was made at about 

midnight of 1 September 1966, and the 212-point survey during the early afternoon of 

31 August 1966, a cloudy and mild summer day. 

The rms of the reflector and the contour maps of its effective surface deviations were obtained 

from analyses of the two sets of optical measurements.   The rms of the reflector in the face-up 

attitude was found to be about 37 mils for the night survey and 41 mils for the day survey. 

The larger surface errors(measured from the best-fit paraboloid) were found to occur in the 

region of the inner panels. 

The gain and the half-power beamwidth corresponding to the measured surface deviations 

were calculated and compared with those obtained by radiometric measurements.   Good 

agreement was obtained.   Both the radiometric measurements and the analyses of the optical 
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measurements indicate a reduction in the half-power beamwidth as the axial gain decreases. 

This phenomenon is shown in Appendix A to be a characteristic of a reflector with its 

larger errors near the center. 

A detailed analysis was made of the rerigged reflector, assuming that only the inner panels 

will be rerigged, and taking into account the effects of all the known deterministic errors 

and of the random errors from the initial rigging and the rerigging operation.   It was found 

that the rerigged reflector will have an rms of about 16 to 21 mils, depending on zenith 

angle, and assuming thermal conditions similar to those of the night survey of 1 September 

1966.   This represents   a reduction in rms of almost 50 percent. 

Using Eq. (4.4), the average increase in the axial gain resulting from the rerigging is 

predicted to be about .36 db at 8.25 GHz and about 1 .25 db at 15.75 GHz.   The actual 

increase, however, is expected to be somewhat larger than these values, due to an expected 

increase in the size of the correlation region for the inner panels (see Eq. (9) of Reference 

15).   Another reason why Eq. (4.4) is expected to underestimate the increase in axial 

gain is associated with the fact that we have not taken into account the variability of 

radome blockage over the aperture.   The effect of this blockage is to increase the relative 

influence of the inner panels, which, after rerigging, have considerably less error than the 

outer panels. 

The half-power beamwidth of the rerigged antenna is expected to be somewhat larger than 

that of the present dish, since any reduction in errors in the central region of the reflector 

is expected to have the same effect as an increase in the taper of the illumination function 

and hence to increase the half-power beamwidth. 

In the prediction of the surface deviations of the rerigged antenna, the errors due to the 

location of the theodolite were neglected.   These errors can affect significantly the rms of 
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the rerigged reflector.   To eliminate them, it is suggested that the rerigging be performed 

as follows: 

1 . Perform a survey of outboard targets with the theodolite located at some 

point near the RF axis.   The process should include tape and angular measurements 

to selected splice plate targets and angular measurements to a sample of outboard 

targets. 

2. Perform a computer analysis to establish the location of the theodolite with 

respect to the best-fit paraboloid through the measured outboard targets and obtain 

the angles for setting the inboard targets so that they will lie on the biased surface 

3. Perform the rigging of the surface in accordance with the rigging table generated 

above. 

It should be noted that in this investigation the counterweight cable forces and the zenith 

angles at which they pick up load were assumed to remain unchanged.   Obviously, some 

further level of improvement can be achieved if an investigation is performed to optimize 

the cable forces and their pick-up angles. 

As was pointed out above, the predicted rms of 16 and 21 mils for the rerigged reflector 

assumes rather favorable nighttime conditions.   Adverse thermal conditions can be expected 

to add roughly 4 to 8 mils to these values, depending on the effectiveness of environmental 

control measures. 

On the basis of this investigation we conclude the following: 

1 . The validity of the theoretical formulations and analytical techniques which were 

developed is demonstrated by the good correlation between the analytical results 

and the radiometric measurements. 

2. Rerigging of the Haystack antenna by adjustment of only the inner panels is feasible 
The rms of the rerigged reflector under average thermal conditions is expected not 

to exceed 25 mils . 
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APPENDIX  A 

A NOTE ON ANTENNA TOLERANCE THEORY 

Deviations from the ideal paraboloid shape of antenna reflectors may be caused by 

manufacturing and rigging tolerances and by gravity, wind, and thermal effects.   The 

effects of manufacturing tolerances, rigging tolerances, and errors in the instruments 

employed in the manufacturing and rigging process can be estimated at each point of the 

reflector through stochastic analyses [4].   Automated computation techniques permit 

structural engineers to predict the deformations of the reflector surface caused by known 

wind and gravity loads and temperature changes with a very good degree of accuracy [14]. 

To predict the loss of gain and pattern degradation due to surface errors, J. Ruze [15] 

proposed a formula in which a single quantity, namely the root mean square of the effective 

surface deviations, is employed as a measure of surface deviation from an ideal paraboloid 

shape. (Effective surface deviation is defined as one-half the change in the RF-path length 

and is equal to the axial component of the normal deviation from the best-fit paraboloid.) 

In his formulation, the assumption was made that surface deviations at any point on the 

reflector are random samples from a single normal Gaussian distribution with zero mean and 

a standard deviation equal to the rms error of the surface.   These errors were further assumed 

to be correlated in small regions. 

The actual effective surface deviations of a reflector may have a distribution which differs 

significantly from the above assumption .   It is of interest to determine the range of validity 

of Ruze's equation in predicting the loss of axial gain and the change in the half-power 
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beamwidth for a reflector with nonuniform distribution of surface deviations. 

In this appendix a general formula for the gain is developed and the accuracy of Ruze's 

equation is discussed.   Finally a correction term is proposed which takes into account 

the effect of distribution of error over the aperture. 

The gain of an aperture with a phase error 6 (r, o') may be expressed by the following 

equation: 

\c   r /-\    I k.r     j 6 (?) Is 

. f (r) e e dS 

G(0,<p)=   4? " ~ (AJ) 
A J    f3 (?)  dS 

A 

where F      = (r, <p') is the aperture position vector, 

f       = the illumination function, 
- 277 - — 
k       = —  p     where   p     is a unit vector in the direction 

X      o o 
of observation, and 

(8,(p) = the angular position of vector k (see Fig. 17). 

Consider the phase error function 6 at point   r   as a random sample from a normal Gaussian 

distribution with zero mean and a standard deviation 0" (r), a function of position 

within the aperture.   Let us furthermore assume that the surface is subdivided into   N 

regions; within each region the variance of phase error is so correlated that for the 

difference in the phase errors of points r^ and Tg in that region, we can write 

0s &-T3)=   [o8 (FxJ+o3^) 3(1 -e^/e) (A.2) 

where r is the distance between rx and r2 and c is the radius of the correlation region . 
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For N large, the expected gain of the antenna may be expressed as follows: 

.       If              -oV2     i k-r  , c|
3 

G(9*»   =      -^   Lkl^i ! ILL 
A J*   f3 (?) d s 

(A.3) 

+ (i^)3   j    1_      e
_(!T")2/n    L f3 (F)e^"dS 

X n:i    nn! j   p (7) d s 

where u = sin 6.   The coherent and incoherent parts reduce to the corresponding terms 

in Ruze's equation if  a (?) is assumed to be constant over the aperture. 

To compare the results of the above equation with those of Ruze's equation, the gain 

of a 120-foot antenna was calculated for a uniform illumination and with various distributions 

of the standard deviation of the phase error function over the aperture.   For the purposes 

of this presentation, only the coherent part of the power is considered .      The function a (r) 

is assumed to be radially linear and expressible as follows: 

0(F) = O    + V  (r - C ) (A.4) 
o o 

where the constant a   is the rms of the phase error, v is a measure of deviation of a from a 
o o 

and the constant C    is chosen so that the following relation would hold: 
o 

^ .        Jl^|)dA (A_5) 

Two limiting conditions can be visualized; one where a (?) vanishes at the center, where 

V = a /C   and another when a (r) decreases linearly and vanishes at the outer edge ( r = R), 
o     o 

where v =0 /(C    - R).   For a expressed by Eq. (A.4), the former value   of v corresponds 
o      o 

to the maximum rate of increase of the standard deviation of the phase error and is thus 

referred to as [/        ; the latter corresponds to the minimum value of this rate of increase, 
max 

and is referred to as v   .    (a negative quantity) . Two intermediate conditions, 
mm 
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namely V\ - V       /2 and vs ~ V   . /2 are also considered .   The variation of axial gain 
max mm 

with the wave length is shown in Fig. 25 for various values of rms. 

For the cases examined, a point of interest is that Ruze's equation always underestimates 

the gain.   The deviation between the "actual" gain and that predicted by Ruze's equation 

increases for higher frequencies.   A statistical proof of this statement in the general case 

is presented later in this appendix. 

The increase in scatter with an increase in the rms error may be predicted by Ruze's 

equation .   For this purpose a size must be assumed for the correlation region c .   (A 

correlation radius of c = D/20 was assumed by Ruze .)   An increase in the scatter, and thus 

in the half-power beamwidth, can be obtained by assuming larger correlation radii.   The 

regional variation of the variance of the phase error over the aperture may be conceived of 

as a large underlying correlation region.   It is therefore expected that the variation in o2 

would affect the scatter significantly. 

For the two limiting cases of radially linear variation of a, namely for v        and v   .   , 
max mm 

the half-power beamwidth is calculated as a function of the rms error a   of the reflector. 
o 

The computation was performed for a uniformly illuminated circular aperture of 120-foot 

radius and c = 5.6 feet.   The results are shown in Fig. 26. 

It can be observed that the half-power beamwidth is significantly affected by the 

distributivity of the variance of phase error.   For antennas having less error at the center, 

the half-power beamwidth is significantly greater than that predicted by the Ruze theory. 

When an antenna has its greatest surface deviations at the center, the half-power beamwidth 

decreases with increasing rms.   This phenomenon may be explained by noting that as the 

central region deteriorates, the antenna tends to behave as an annular ring, whose half-power 

beamwidth decreases with an increase in the rms of the reflector. 
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The complexity of Eq. (A.3) reduces its suitability for use in approximate design. 

Certain simplifications will be made in this equation for this purpose.   However, these 

simplifications limit the applicability of the theory to the prediction of the loss of gain 

alone.   To predict the scatter, Eq.(A.3)  must still be employed. 

Considering only the first term of Eq. (A.3), the gain of the antenna can be written in 

the following form: 

4TT -o- Ufw.-^.'^dsr 

w 

G(9,<p)    =^e     o       '-"    v/v- —' (A.6) 
A /   f2 (r) d S 

A 

here £ = a2^) - o2  , and   o2   is the averaged variance of the phase error defined as follows: 
o o 

^ =      I 02 (r) f (7) d S {AJ) 

° I   f(r)dS 
A 

Note that the average of £ over the surface is zero.   Therefore, if we assume that £ 

at each point on the aperture is a random sample from a normal Gaussian distribution with 

zero mean and standard deviation 0\ , then the expected value of gain can be written 

as follows: 

G(9,<p)    =      G    e"°o      e °^/A (A.8) 
o 

To express the above equation in terms of surface deviations, let us introduce the rms of the 

effective surface deviations defined as follows: 

s          2       L c2 f (?) d S ,A m e   = rms2 =  — —  (A. 9) 

; foods 
A 

where the function c is the effective surface deviation from the best-fit paraboloid 

for deterministic errors and it is the standard deviation of the effective surface deviations 

for random errors.   Let us also define a quantity called the second variance of surface 
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deviations as follows: 

J    (€3  - €3f  f (r) d S 

T?4 =  second variance of surface deviations = -  (A. 10) 
Jf(T)dS 

Then, Eq.(A.8) may be written as follows 

G     =      G e   {—^>        e    *(^^) (A.11) 

A comparison of this equation with Eq.  (A.3) and Ruze's equation is made in Fig. 27 for the 

case of radially linear variation of the effective surface deviations.   The results 

indicate the range of validity of Ruze's equation and the level of improvement that can be 

achieved by employing the modified equation, Eq. (A. 11). 

It can easily be observed from Eq. (A. 11) that if V   does not vanish, then the gain predicted 
o 

from Eq. (A. 11) is always larger than that predicted from Ruze's equation.   That is, the 

Ruze theory always underestimates the gain of the antenna for a given rms of effective 

surface deviations. 

44 



APPENDIX   B 

PROGRAM BESTF1T 

B.l Introduction 

The program BESTFIT was written primarily for the analysis of the optical survey of the 

Haystack reflector.   Employing the zenith angles of the selected targets, the program 

computes the effective surface deviations (with respect to the best-fit paraboloid) and 

the rms of the reflector for any desired position of the antenna.   The program is written 

in FORTRAN for the CDC 3300 computer. 

The solution process involves computing the surface deviations with respect to an initial 

reference paraboloid.   This reference paraboloid is then shifted as a rigid body and its 

focal length is changed so as to obtain the minimum rms.   The corresponding effective 

surface deviations and the rms of the reflector are then calculated.   These best-fit surface 

deviations are augmented by the dead weight travels of the antenna in going from zero to 

a desired zenith angle and the best-fitting process is repeated.   The program also generates 

the input for programs CONTOUR and RADPAT. 

In the following sections, the input and the output of this program are described in detail. 

The limitations and the restrictions of the program are also discussed.   The terminology 

used is described below. 

A Real Set consists of the surveyed targets on a single radial target line. 

A Dummy Set consists of the non-surveyed targets on a single radial line.   Since the program 

assumes that a target is located at every intersection of a circumferential row and a radial 

line, some dummy targets are imaginary. 

Target Index Number (T .1 .N.) is an index which sequentially numbers all circumferential rows 

(see Figure 28). 
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Target Sequence Number (T.S.N.) is.an index which sequentially numbers the circumferential 

rows on which one or more surveyed targets are located (see Fig. 28). 

Target I .D. is the identification for a target. It specifies the target row, the panel 

number on which the target is located, and whether the target is an edge target or a 

center target (i .e . H24C). 

B.2        Input 

The input to this program consist of the coordinates of each radial line of targets, the measured 

zenith angles, the measured or expected errors in the distances between targets and in the 

radii of the splice plate targets, the area-illumination factor associated with each target, 

and the dead weight displacements in the face-up and face-side attitude.   The input is 

prepared in fourteen blocks as described below: 

BLOCK I Coordinates of Inboard Targets ( IPX, 2F12.6) 

ID RIN(J) ZIN (J) 

BLOCK II 

ID =       Identification of the card. (This field will not be read 

by the computer.) 

RIN(J)     =      Radius of the Jth inboard target in inches (J=T.I .N.). 

ZIN(J)    =       Z-coordinate of the Jth inboard target in inches. 

Note: There are a total of seven cards in this block, one for 
every circumferential row; they must be arranged in 
order of ascending T .1 .N ,'s .   The splice plate target 
row is included both here and in BLOCK II . 

Coordinates of Outboard Targets (10X, 2F12.6) 

ID ROUT   J ZOUT (J) 

ROUT(J) =       Radius of the Jth outboard target in inches. 

ZOUT(J)=      Z-coordinate of the Jth outboard target in inches. 

Note: BLOCK II is similar to BLOCK I except for the number 

of cards, which is nine in this block.   The splice plate 

target row is included both here and in BLOCK I . 
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BLOCK III Program Constants (215, F12.6) 

NLINE LLINE F 

NLINE    =      Total number of real sets and dummy sets. 

LLINE      =      Total number of real sets. 

F =       Design focal length of the antenna in inches 

BLOCK IV Distance Errors (10X, 9F7.4) 

ID   1 DIST (1,1)       DIST (1,2)// DIST(I#N) 

DIST(I,1)=      Distance error between the best-fit axis of revolution 

and the splice plate target of the Ith real set in inches. 

DIST(I, J)=      Distance error between targets T .S .N . = J and T .S .N . 

J + 1. 

Note: There are a total of LLINE cards,which may be arranged 
in any arbitrary manner; however, their order must be 

the same for BLOCKS V, IX, XI, XII ,and XIII. 

BLOCK V 

BLOCK VI 

Area-Illumination Factors (8X, 9F8 .5) 

ID AR(I,1)   //       AR(I,N) 

AR(I,J)    =      Area-illumination factor associated with the target 

T.S.N. = J of the Ith real set. 

Controlling Indices (315) 

NIN NOU NTRAV 

NIN = The highest T .S.N . of the inboard targets. 

NOU       = The highest T .S .N . of the outboard targets 

NTRAV   = 0    if antenna is in face-up attitude, 

= 1     if antenna is not in face-up attitude. 
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BLOCK VII Inboard Target Sequence (715) 

INX(l)        INX(2)      //   INX(7) 

INX(T) T.S.N. of the Ith inboard target. 

BLOCK VIII Outboard Target Sequence (915) 

IPX (1) |      IPX (2)       ~jl IPX (9) 

IPX(I)     =      T .S .N . of the Ith outboard target, 

BLPCK IX 1. Set Controls (A4,6X,2I5) 

NPTE: 

KLINE (I) NDD (I) ICK (I) 

KLINE(I) = INBP      This indicates that the Ith set is an inboard set. 

= PUTBD    This indicates that the 1th set is an outboard set, 

NDD(I)    = The line number on which the Ith set is located. 

ICK(I)      = 0 if the 1th set is real, 

= 1 if the Ith set is a dummy set. 

2.   Zenith-angle Measurements (A1,F2.0,A1,4X/ F4.0,2F3.0) 

TARG 9i 92 6b 

TARG      =      Target I.D. 

^l /02 ,6b =      The zenith angle measured to the target under consideration 
in degrees, minutes,and seconds, respectively 

Note: Part 2 is omitted for dummy sets . 

Block IX is repeated for all real and dummy sets. 

BLPCKS X thru XIII are required only when NTRAV = 1; that is when 
the antenna is not in face-up attitude. 

BLPCK X Antenna Position (8X, F8.5) 

PPS 

PPS =       Zenith angle of antenna in degrees 
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BLOCK XI Face-up Deflections (19X, 3E13.5) 

ID DISX (1,J)       DISY(1,J)   |  DlSZqj) 

DISX(I, J)I      x,y, and z displacements of the target T .S .N . = J 

DISY(1,J) S= of the Ith real set due to dead loads when antenna is 
DISZ(I,J)J      in the face-up position (in inches). 

There are NIN or NOU cards in this block.   They must be arranged 

in the ascending order of the T .S .N ,s. 

Note: Repeat this block for each real set. 

BLOCK XII Face-side Deflections (19X,3E13.5) 

ID     AISX (I,J) AISY(IJ)        ASIZ(IJ) 

This block is similar to BLOCK XI except that these displacements are 
due to dead loads when antenna is in the face-side position. 

Note: Repeat this block for each real set. 

BLOCK XIII Center Cable Displacements (19X, 3E13.5) 

ID C2X (I,J) C2Y I,J C2Z (I,J 

Similar to BLOCK XII except that these displacements are due to the 

action of the center cable- 

Note: Repeat this block for each real set 

BLOCK XIV Controls (215) 

I NW1 NTRAV 

NOTE: 

NWI =      0    Terminates the run. 

=       1    Returns control to Block X. 

NTRAV   -      0 or 1, as defined in Block VI. 

Repeat BLOCKS X and XIV for other desired position angles if the 
BLOCKS XI, XII, and XIII have already been read in the computer, 

Otherwise, repeat BLOCKS X thru XIV. 
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B.3       Output 

The output of this program includes most of the input data; the location of the theodolite; 

the effective surface errors   with reference to the best-fit paraboloid   at the surveyed 

targets; the best-fit rms of the reflector weighed by the area-illumination factors, and an 

input data deck to the CONTOUR program for plotting the isograms of the effective surface 

deviations. 

The various sections of output are listed below: 

Input BLOCKS I thru IX are printed. 

The elevation angle of the antenna. 

The location of the theodolite relative to the best-fit paraboloid 

BLOCK I 

BLOCK II 

BLOCK III 

BLOCK IV 

BLOCK V 

BLOCK VI 

BLOCK VII 

BLOCK VIM 

BLOCK IX 

BLOCK X 

NOTE 

The effective surface error with respect to the best-fit paraboloid and the 

area-illumination factors associated with each surveyed target. 

The best-fit root mean square of the effective surface error of the reflector 
weighted by the area-illumination factors. 

The best-fit rms of the effective surface errors of the reflector with all 

the area-illumination factors equal to unity. 

NR, the number of targets located on a radial line including the targets 

in both real and dummy sets;  NT, the number of radial lines. 

The radii of each target row. 

The circumferential angle of each radial line. 

The effective surface errors with respect to the best-fit paraboloid for 
all real and dummy targets .As a contour plotting aid, the effective 
surface errors at dummy targets are obtained by linear interpolation 
between the values at the adjacent real targets. 

BLOCKS I thru VI are printed, BLOCK VII is punched, and BLOCKS 

VIII thru X are printed and punched.     BLOCK I is printed only once; 

all the other blocks are generated for every desired position angle of 
the antenna. (The punched data is used as input to program CONTOUR.) 
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B.4        Restrictions and Remarks 

This program was designed mainly for the analysis of survey measurements of the Haystack 

antenna.   It was not attempted to make the program completely general for direct application 

to any other reflector.   However, there are only two sections in this program which are not 

applicable to other problems, and they can be modified to fit almost any problem with little 

effort.   These two sections are as follows: 

1 . The target identification system.   The target identification is used to locate 
a target and to obtain its coordinates.   Any change in the target identification 

system requires a corresponding change in the program. 

2. The dead load displacements due to the deflection compensation cables.   For 

problems which have no deflection compensation cable systems, the user can 
provide a dummy set of input data.   Even for Haystack antenna, if the elevation 

angles at initial cable pick up are changed, the program must be appropriately modified 

The program employs essentially the full core storage (32,768 storage locations).   Therefore, 

in addition to the restrictions mentioned above, the following size limitations must be 

observed: 

NIN < 7 

NOU < 9 

LLINE < 56 

NLINE < 80 

Total number of lines ^   40 

Total number of measured targets £ 440 

The program uses standard input and output units. 

B.5        Running Time 

The approximate running time of this program is about three minutes for the first zenith 

angle and slightly less than two minutes for each successive value. 
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APPENDIX   C 

PROGRAM CONTOUR 

C.l        Introduction 

For a function   F   defined at all the nodes of a polar grid system, the program CONTOUR 

can be employed to obtain a contour plot of the variation of   F   over any annular region . 

The program can employ unequal grid intervals and produces the isograms of   F (r,<p') at 

specified intervals.   This program is written in FORTRAN language for the CDC 3300 

computer with an attached display unit. 

The program CONTOUR consists of a main program, the three subroutines CONTACT, MODE, 

and CONNECT, and a number of plotting subroutines provided by the present library 

routines of the CDC 3300 computer at Haystack Hill, Westford, Mass.   The main program 

controls the input phase and the calling sequence of the various subroutines.   The subroutine 

CONTACT searches the array [At} ] and locates all the equipollent points by linear 

interpolation between the elements of the array, and it determines the points to be 

connected together to form an isogram.   The subroutine MODE determines whether the 

beginning point and the end point of an isogram should be connected together.   The 

subroutine CONNECT converts the polar coordinates of the equipollent points to the 

cartesian coordinates and then plots the isograms. 

C.2       Input 

The input to the program CONTOUR includes two vector arrays containing the radii and 

the circumferential angles of the node points of the grid, the array [Ali ] containing 

the values of the function F at the node points, the maximum and the minimum isogram 

intensities to be plotted, the interval between isograms, and the title to be printed on 

the contour plot. 
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It is important to note that the input to this program may be obtained from the program 

BESTFIT with the exception of isogram control cards and the identification card.   A 

detailed description of the input to this program is given below. 

BLOCK I Define Grid System (215) 

NVROW   NVCOL 

NVROW 

NVCOL 

The number of nodes on a radial line = the number of 
rows cf matrix A • 

The number of nodes on a circumferential line = the 
number of columns of matrix A. 

BLOCK II        Define Grid Radii (8F1CM) 

R(l)     |      R (2)7 j      R (8) 

R(I) The r-coordinate of the Ith radial node in inches. 

Note:   There are NVROW nodes on a radius; they must be read in 

numerical order. 

BLOCK III       Define Circumferential Angles of Grid (6F12) 

THETA (1)      |    THETA (2)~~\ \  THETA (6) 

THETA (J)     =      6-coordinate of the Jth node on a circumferential line, in radians. 

Note:   There are NVCOL joints on a circumferential line; they must be 

arranged in numerical order. 

BLOCK IV      Values of Array [A] (6F12) 

"AO^H)   A(I,J) A (1,1) 

A (l,J) =      The value of the function   F   defined at a node located on 
the Ith radial line and the Jth circumferential line. 
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BLOCK V       Contour Control (3F12 .6) 

SI S2 S3 

51 =      The lowest isogram value to be plotted. 

52 =      The highest isogram value to be plotted 

53 =      The interval between isograms. 

See Note (5) under Remarks. 

BLOCK VI       Identification (20A4) 

QTi] 

NOTE: 

HE =      The title of the plot. 

The title appears at the bottom of the plot. 

Repeat Blocks I thru VI for next problem.   If there are no more problems 

to be done, provide a blank card to terminate the run . 

C .3       Output 

The output of this program is a contour plot which is shown on the display unit.   A 35mm 

snapshot is automatically taken of each plot.   Also, the machine pauses after each plot 

is completed and types "PLEASE TAKE PICTURE" on the console typewriter, to permit 

a Polaroid photograph to be taken . 

All input data as well as the location designations of the first point and the last point of 

each isogram is printed for checking purposes. 

C .4       Remarks 

This program was designed for plotting the effective surface deviations of the Haystack 

reflector.   There are certain sections in the program which may be modified, if desired, 
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without any difficulty.   These are described below . 

(1) The inner boundary and the outer boundary of the reflector are plotted with 

radii equal to 60 inches and 720 inches respectively. 

(2) The 9 (1) line is set to point to the north direction .   The successive lines are 

assumed to be defined in the counterclockwise direction. 

(3) The maximum number of rows and columns of the matrix A is 16 and 65   respectively. 

(4) The total number of equipollent points of any single isogram cannot be greater 

than 400. 

(5) Since the isogram intensitier. are printed on the plot, it seemed desirable to 

multiply the elements of the input matrix by a factor of 100 to reduce the number of the 
printed significant digits. Input Block V should be specified with respect to the 

modified matrix.   For instance, if the unit of the input matrix is in inches, S3 = 20 

means isograms are required at the interval of 0.2 inches.   The intensities shown 

on the plot can have no more than three digits or two digits preceded by a minus 
sign.   Fractions, if any, will not be shown on the plot. 
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APPENDIX  D 

PROGRAM RAD PAT 

D.l        Introduction 

The program RADPAT computes the radiation diagram of an annular aperture whose surface 

deviations from a best-fit paraboloid are known.   The half-power beamwidth can easily 

be obtained by manually plotting the output.   The program has been written in FORTRAN 

language for the CDC 3300 computer. 

The gain in a given direction of observation defined by<pand 0 (Fig. 17) is expressed by 

the following equation: 

G (e,cp)   = 
4ff 

, /-    j k«~    j 6 (r) J A f (r) e J        e J dA 

!   f2 (T)dA 

w here 

F=(r,<p') 

A 

f 00 

6(F) 

k 

=      the position vector, in polar coordinates, of a point on the aperture, 

=      the wave length, 

=      the aperture illumination function, 

=      the phase error   = 
4 77 c 

X 
(e is the effective surface deviation),and 

2 IT 
—— p   where   p   is a unit vector in the direction of observation, 

A 
The illumination function is assumed to be axially symmetric and to have a paraboloid-on-a- 

pedestal distribution .   The edge taper is arbitrary and is input by specifying the ratio 

of the value of the function at the edge of the aperture to the value at the center. 

The integration is performed by assuming that the variation of the integrand between the 

nodes is expressible by a general second degree polynomial.   The polynomial is then 

Integrated. This integration process is quite accurate and involves negligible discretization 

error. 
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D.2       Input 

The input to the program RADPAT includes the array [An 1 containing the values of the 

effective surface deviations defined at all the nodes of a polar grid system, the coordinates 

of the node points, the boundaries of the aperture, the increments of 0 and cp for defining 

the radiation pattern, the wave length, and the illumination taper. 

The input is described in detail in the following sections. 

BLOCK I Problem Identification (20 A4) 

KD 

.  KD =     The identification of the problem. 

BLOCK II        Define Program Constants (4F10.6, 15, 2F10.6, 15, F10.6) 

RR   RIN   ALFAB  ALFSTP   NALFA    TB    TSTP    NTS    GG 

RR = The outer radius of the aperture in inches. 

RIN = The inner radius of the aperture in inches. 

ALFAB = The initial value of d in degrees. 

ALFSTP = The increment of 8 in degrees. 

NALFA = The tote I number of 9's. 

TB = The initial value of (p in degrees . 

TSTP = The increment of <p in degrees. 

NTS = The total number of <p's . 

GG = The ratio of edge-to-center value of illumination function . 

BLOCK III       Define Grid System (215) 

NR NT 

NR =      The number of nodes on a radial line=the number of rows of matrix A. 

NT =     The number of nodes on a circumferential line = the number of 

columns of matrix A. 
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BLOCK IV      Define Grid Radii (8F10.4) 

BLOCK V 

R(D R(2)     \\   R(NR) 

R (I) =     The r-coordinate of the Ith radial node in inches . 

Note:   There are NR nodes on a radial line, and they must be read in 

numerical order. 

Define Circumferential Angles of Grid (6 F12.6) 

THTA (1) THTA (2)     ~^\ ^       THTA (NT) 

THTA (J) =     The 0-coordinate of the Jth node on a circumferential line 

in radians . 

Note:      There are NT nodes on a circumferential line, and they must be 

read in numerical order. 

BLOCK VI       Define Matrix A (6F12 .6) 

A (1,1)   | A(1^T\\ A(I,J) 

A (I,J)    =     The value of the effective surface deviation of a node point 

located on the Ith radial line and the Jth circumferential 
line of the grid,in inches. 

BLOCK VII     Define Wave Length (F12.6) 

AAMDA 

AAMDA =     The wave length in centimeters. 

Repeat Block VII for different wave lengths. 

BLOCK VIII    Initiate a New Problem or Terminate the Run 

One blank card will instruct the machine to read input Blocks I 

thru Block VIM of a new problem.   Two blank cards will terminate 
computer run . 
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D.3.     Output 

The output of the program consists or the identification of the problem, the wave length, 

and the values of gain.   The values of gain    in db   are listed in a matrix form with 

different <p angles listed column-wise and different 0 angles listed row-wise. 

D .4       Size Limitations 

The following size limitations should be observed 

NR      =   2n + 1; n s 8 

NT       =    2m; m ^32 

NALFA * 20 

NTS ^ 20 

D .5       Running Time 

The running time is approximately three seconds for the evaluation of a single value of 

gain for a grid having 700 nodes. 

59 



I 
o 

_c 
u 
c 

D 

cr 

CN 

V 

o 
E 

o 

> 
Q 

o 
c 
o 

400 600 800 

Number of Surveyed Targets 

1000 

FIGURE  1   -  VARIATION OF THE STANDARD DEVIATION OF THE 

ESTIMATED (RMS)2 OF THE REFLECTOR WITH THE 

NUM3ER OF SURVEYED TARGETS 

61 
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FIGURE 2   -   LOCATION OF 424 TARGETS USED FOR NIGHT SURVEY 
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FIGURE 3 - LOCATION OF 212 TARGETS USED FOR DAYTIME SURVEY 
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FIGURE 4   - NOTATION 
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FIGURE 5   -   EFFECT ON TARGET DEVIATION OF X-   OR Y-DISPLACEMENT 

OF INITIAL REFERENCE PARABOLOID 
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FIGURE 9 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - NIGHT SURVEY 

CONTOUR INTERVAL =50 MILS; ZENITH ANGLE = 0 DEGREES 
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FIGURE 10 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - NIGHT SURVEY 

CONTOUR INTERVAL =50 MILS; ZENITH ANGLE = 15 DEGREES 
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FIGURE 11 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - NIGHT SURVEY 

CONTOUR INTERVAL =50 MILS; ZENITH ANGLE =30 DEGREES 
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FIGURE 12 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - NIGHT SURVEY 

CONTOUR INTERVAL = 50 MILS; ZENITH ANGLE = 45 DEGREES 
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FIGURE 13 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - NIGHT SURVEY 

CONTOUR INTERVAL =50 MILS; ZENITH ANGLE =60 DEGREES 
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FIGURE 14 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - NIGHT SURVEY 

CONTOUR INTERVAL = 50 MILS; ZENITH ANGLE = 75 DEGREES 
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GURE 15 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - NIGHT SURVEY 

CONTOUR INTERVAL =50 MILS; ZENITH ANGLE =90 DEGREES 
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FIGURE 16 - CONTOUR MAP OF MEASURED EFFECTIVE SURFACE DEVIATIONS - DAYTIME SURVEY 

CONTOUR INTERVAL = 50 MILS; ZENITH ANGLE = 0 DEGREES 
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FIGURE  17   -  COORDINATE SYSTEMS DEFINING DIRECTION OF 
OBSERVATION AND APERTURE POSITION 

77 



u 
c 

a 

3 

2 

<: 
Z 
0 
h- 
u 
z 
u_ 

z 
o 
I— 
< 
z 

3 

Q 
LU 

D 

< 

o 
z 
o 

< 
> 

i 

co 

o 

j   uo^ounj uoj4DuiLun| || 

78 



7 1                          1          1—                       T       " 
o rv / 

11       1/      o 
9-    /        ii 

U_ 

Q 
LU 

o < 
_J 

3 
( \      ^ u I        N _l 

< 
u 
N 
X 

o 0 
l\ 

LO 

< 
— o 

CN 
< 
z 
z 
LU 

1/1 
9) 
0) 
La 

03 
0) 

z 
< 

|o u _Q 
• o — < 

1— CN 

2 > || 
\ c < 

X LU 

cr 
o 
LU. 

< 
1— 

o I I 1 

^^*^"** *fc_^ 

CM 2 
< 
o 

o 
Q 
LU 

• < > 
^^^^-   ""** *** -• mm Q LU 

^^  •" — — —-.-..., z > 

- 
^r           *» *"  ^ 

O 
1 

o 3 
on 

t— h- 
< X 
Q O 

/   / 
/    / 

/     I 

< 

1 

z 

~ \    \ 
\       V 

o 
o 

1 
o 

LU 

- \           ^^ 3 
o 

' 1                   1                   1                   1 U_ 

R R o LO 
LO 

o 
LO 

HP u! U!D9 

79 



o 

3 
u 
—I 
< u 
N x 
o 
CNI 

CO 

< z 
Z 
LU 

z 
< 

I—   CN 
(/I — 

5: 
X  P* J-  uj 

02 
5 
< 
o 
< 

z 
o 
I— 
< 

< 

o 
CN 

or 
3 
o 

> 
OS 

to 
i— 
X 
O 

o 
IN. -O 

o o 

qp Ul  UIDQ 

80 



01 

CO 

<r 

5 
o 

D 
U 
< u 
N 
x 
O 
ID 

in 

< 
< 
Z 
Z 

z 
< 

U CM 
< <— 
£ ll 
<f LU 

*S 
C£ I— 

O UJ 
U. Q 

5 q 
< m 

o > 
<; UJ 

z5 
O UJ 
i= 5 
< i= Q £ < 5 

i 

R o 
•O 

o o 
in 

qp u; UIDQ 

81 



o 
T I                            l 1 >o 

- 5 
O 

t= ICN    /    / o Ll_ 
• 

"      /   /I 9- / /   o 
CN Q 

LU 

< (      i < 
— —I 

U 
_J 
< 

_ O U 
*     ^x CO N 

T    1 
J   / X 

O 
m 
CN 

CO 

t— 

? < 
< 
Z 
z 
LU \— 
z 
< 

•( 

o 12 

5 S
TA

C
K

 
- 

12
 d

b 

cr 

R 
H

A
Y

 
TA

PE
R

 

? 

R
A

M
F

O
 

E
D

G
E

 

* ^A 

o D
IA

G
 

R
V

E
Y

; 

— CO z2 ^^^A 1 

O   LU sir 
•=    5 

t f 
1 1 
1   1 
\ \ \  \ 
\ \ 

o 
CN 

R
A

D
IA

 
D

A
Y

T
I 

i \ X 1 \ \ 
S  \ CN 

N    \. CN 
\     >v 

N     ^ LU 
Qi 

o 
i •                                              • 1 8 LL. 

o m O                              iO o IO 
rv o o                      m m <* 

qp U| UIDQ 

82 



^ 
• »   i—•—r  '    i— 

\    N 
X     S 
\    N 

X    N 
\   \ 
\    N 

\    \ 
\     ^ 
\     \ 
\      \ 
\     X - 

\      \ 

u
rf

a
c 

- 

»                                    /   / O)                                          /    / 
a>                                  /  / 
a>                                  /   / °*                              /   ' —                            •     / 
5                     X    * c                   /    ' 

\JA   ' x/'         E 
V /            2 
/   /                          O     w> 
//                    CO / /                   o   t 

^S^     "x 

\   1 

/   / 
I...  L .         1         .          /   /.         1 

O LU 
O _J 

o 
z 
< 
X 
h- 

Z 
LU 
N 
X 
t— 

o 
1— 
u 
LU 
_J 
LL. o LU 

L. 
CT> Q 
0) LU 

Q 0 
c o * — 
D c LU 
c CtL 

<D LL. 
4— o 
< U~l 

O 5 
CD — LL. 

? o 
< z _c 0 
'E 1— o 

CO N < 

< 
> 
a 
LU 
f— 

y 
Q 
LU 
a; 
Q_ 

CO 
CN 

o 
o a- 
CM — 
o o 

oo 

o 
IS 

o o 

S3L)DU| ui J04D3IJ3JI jo c,yyy 

83 



FIGURE 24 - CONTOUR MAP OF PREDICTED EFFECTIVE SURFACE DEVIATIONS 
OF RERIGGED ANTENNA 

CONTOUR INTERVAL = 50 MILS; ZENITH ANGLE = 0 DEGREES 
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